tutorial #9 [lenses] .quiz

- 1) The far point of a nearsighted person is 6.0 m from her eyes, and she wears contacts that enable her to see distant objects clearly. A tree is 18.0 m away and 2.0 m high.
- a) When she looks through the contacts at the tree, what is its image distance?
- b) How high is the image formed by the contacts?
- Contacts makes an image at 6m from objects at infinity $\rightarrow \frac{1}{\infty} + \frac{1}{-6m} = \frac{1}{f} \rightarrow f = -6m$. Now for tree $d_0 = 18.0 \text{ m} \rightarrow \frac{1}{18 \text{ m}} + \frac{1}{d_1} = \frac{1}{f} = \frac{1}{-6 \text{ m}} \rightarrow d_1 = -4.5 \text{ m}$ closer than the far point so eye can focus
- b) $m = \frac{hi}{h_0} = \frac{-di}{do} = \frac{4.5^m}{18m} = 0.25 \rightarrow h_i = 0.25 h_0 = 0.5 m$
- 2) Hans Lippershey builds a microscope with two convex lenses with focal lengths $f_0 = 8.0 \text{ mm}$ and $f_{\rm e}=10$ cm. The tube length, i.e. the distance between the lenses, is d=16 cm. The image of the objective lens is located at the focal point of the eyepiece lens (relaxed eye).
- a) Find the linear magnification of the objective lens.
- b) Find the angular magnification of the eyepiece lens.

 where is the total magnification?

 The eyepiece lens.

 The eyepiece lens.
- c) What is the total magnification?
- a) $f_0 = 8.0^{mm}$, $d_1^{(obj.)} = 16^{cm} 10^{cm} = 6^{cm}$, $\frac{1}{d_0^{(obj.)}} + \frac{1}{d_1^{(obj.)}} = \frac{1}{f_0}$ So $d_0^{(obj.)} = 0.9^{cm} \Rightarrow m = -\frac{6cm}{0.9^{cm}} = -7$
- fe=10cm

- b) $M = \frac{25 \text{ cm}}{f} = 2.5$
- $A = 7 \times 2.5 = 17.5$
- 3) Aristophanes has a concave lens with focal length $f_1 = -10$ cm and a convex lens with focal length $f_2 = 20$ cm. He uses concave lens as the objective. The distance between the object and the concave lens is $d_{o1} = 10$ cm and the distance between the image (image for the convex lens) and the convex lens
- a) Write an equation for the concave lens and find the distance of its image from itself.
- b) Write an equation for the convex lens and find the distance of its object from itself.
- c) What is the distance between the two lenses?
- $\frac{1}{d_{i_1}} + \frac{1}{d_{o_1}} = \frac{1}{f_1} \rightarrow d_{i_1} = \frac{f_1 d_{o_1}}{d_{o_1} f_1} = -5 \text{ cm}.$
- b) $\frac{1}{d_{i_2}} + \frac{1}{d_{o_2}} = \frac{1}{f_2} \rightarrow d_{o_2} = \frac{f_2 d_{i_2}}{d_{i_1} f_2} = 30 \text{ cm}.$
- c) $d = d_{11} + d_{02} = -5 cm + 30 cm = 25 cm$.
 - the image for the lens I is the object for the lens 2.