Name:

1) CLASS(2) $\mathbb{Z} = |$

In a high voltage discharge tube, a wavelength of 410.2 nm is emitted from a hydrogen atom. Find the initial and final values of the quantum number n for the electron which produces this wavelength. Hint: Think about the maximum and minimum you get for each series, and try to see if this specific wavelength

is in a range.
$$\frac{1}{\lambda} = R_{Z}^{2} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$
 $\lambda = 410.2 \text{ nm} \rightarrow \frac{1}{\lambda} = 0.2438 \text{ R}.$

Lyman: $n_{1} = 1 \rightarrow 1/\lambda_{min} = R(1-0)$, $1/\lambda_{max} = R(1-\frac{1}{4}) \rightarrow \lambda_{max}^{L} \wedge \lambda^{*}$

Balmer: $n_{1} = 2 \rightarrow 1/\lambda_{min}^{B} = R(\frac{1}{4} - 0)$, $1/\lambda_{max}^{B} = R(\frac{1}{4} - \frac{1}{4}) \rightarrow \lambda_{min}^{B} \wedge \lambda^{*} \wedge \lambda_{max}^{B} = \lambda_{min}^{B} \wedge \lambda^{*} \wedge \lambda_{max}^{B} = \lambda_{min}^{B} \wedge \lambda^{*} \wedge \lambda_{min}^{B} = \lambda_{min}^{B} \wedge \lambda_{min}^{B} \wedge \lambda_{min}^{B} = \lambda_{min}^{B} \wedge \lambda_{min}^{B} \wedge \lambda_{min}^{B} = \lambda_{min}^{B} \wedge \lambda_{$

2) CLASS(2)

We know, using conservation of the angular momentum, that electrons when by absorbing/emitting a photon change their quantum number n, they have to change their quantum number l by ± 1 .

- a) Can an electron go from 1s to 3d absorbing one photon? How about 3s to 4p?
- b) An electron changes n from 2 to 1. Find the l quantum number before and after emitting the photon.

a) Is:
$$n=1$$
, $l=0$, $3d$: $n=3$, $l=2$ \rightarrow $\Delta l=2$ not possible wl a photon.
3s: $n=3$, $l=0$, $4P$: $n=4$, $l=1$ \rightarrow $\Delta l=1$ possible wl a photon.

b) Finally
$$n=1$$
 so $l=0$. So initially electron can only have $l=1$.

3) CLASS(2)

The orbital quantum number for an electron in a Li²⁺ atom is l = 3. What are the possible n quantum number for this electron? What are the possible m_l quantum number for this electron? Find the maximum and minimum wavelengths of photons emitted when this electron jumps from a possible n to a lower one.

$$n = 4, 5, 6, ...$$
 $l = 3$ $m_l = -3, ..., 3$ $\frac{1}{\lambda} = R Z^2 \left(\frac{1}{h_1^2} - \frac{1}{h_2^2} \right)$, Li²⁺ is H-like, i.e. it has only one electron $\notin Z = 3$

max energy photon:
$$N=\infty$$
 , $l=3$

$$N=3$$
 , $l=2$
Conservation of L ($\Delta l=\pm 1$)
$$\frac{1}{\lambda_{min}}=R.9.\left(\frac{1}{9}-0\right)=R \rightarrow \lambda_{min}=R^{-1}.$$

min energy photon:
$$N=\infty$$
 , $l=3$
 $N=\infty-1$, $l=2$ or $l=3$
 $l=\infty-1$, $l=2$ or $l=3$
 $l=1$ Conservation of $l=1$ ($l=1$)
$$\frac{1}{\lambda_{max}} = R \cdot q \cdot (0-0) = 0 \quad \Rightarrow \lambda_{max} = \infty$$